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Abstract-Laminar natural convection over a sharp-edged horizontai bar situated in an infinite fluid 
medium has been investigated numerically and experimentally. Finite-difference solutions to the two- 
dimensional Navier-Stokes and energy equations were obtained with a fixed Prandtl number of 0.7 for the 
two confieurations: a hat mate of finite thickness and a square bar. The difficulty associated with the 
complex ihysical flow domain was overcome by using the body-fitted coordinates. In the numerical study 
we found no indication of flow separation for the flat plate, in the range of Rayleigh number 10’ d Ra 4 IO’. 
For the square bar, however, the boundary layer separated easily at the upper sharp edges for Ru > 5 x 10” 
and well-defined twin vortices were identified above the upper horizontal surface. A Mach-Zehnder 
interferometric study was concurrently carried out in air for the square bar to determine the local tem- 
perature and Nusselt number distributions in the Rayleigh number range 1.95 x lo4 < Ra Q 1.53 x 10’. 

Comparison of the two results, the numerical and the experimental, offered good agreement. 

INrRODUCTlON 

LAMINAR natural convection about heated bodies 
has been investigated extensively. Most of the earlier 
studies are, in general, limited to natural convection 
without l-low separation. The flow separated from 
a bluff body is of inherent interest in fluid mechanics 
since the wall heat flux or the wall pressure can be 
significantly inlluenced by its existence. In forced convec- 
tion, flow separation is attributed to the reaction 
of the viscous boundary layer to a pressure field 
established in an adjacent outer inviscid flow region. 
In contrast, the flow separation mechanism in the 
natural convection is complicated because the buoy- 
ancy force which is not necessarily aligned with the 
body surface operates as a body force in the entire 
boundary layer. 

Flow separation in natural convection seems to 
have been very elusive and did not receive due atten- 
tion in the literature. Bromhan and Mayhew [1] 
reported from smoke tests the observation of a small 
separated flow region at the base of a plume rising 
from a heated sphere. Schenk and Schenkels [2] 
carried out an experimental study with an ice sphere 
melting in water. They observed that the downward 
boundary layer, generated by a prevailing positive 
thermal expansion coefficient above 4°C separates 
ahead of the bottom stagnation point. 

For two-dimensional natural convection, Pera and 
Gebhart [3] concluded by experimental observation 
of the wake formation over a circular cylinder in water 
that the flow separation did not exist in the natural 
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convective flow adjacent to the smooth body surface. 
Another experimental study includes one for a hori- 
zontal semi-infinite flat plate : the interferometry per- 
formed by Rottem and Claassen 141, semi-focusing 
colour Schlieren photography, revealed that the 
boundary layer on the upper surface of the plate broke 
down into a large eddy instability at some distance 
from the leading edge. Pera and Gebhart [S, 61 and 
Gebhart [7, 81 also confirmed by smoke visualization 
the existence of such a laminar boundary layer near 
the leading edge above a heated horizontal surface. 

The possibility of flow separation in the natural 
convective ilow about a heated square bar was first 
reported in ref. 191. From the peculiar temperature 
inversion phenomenon, first fortuitously found in the 
Mach-Zehnder interferograms in the Grashof num- 
ber range 2.77 x 104-2.19x lo’, the existence of twin 
vortices above the upper horizontal surface of the 
square bar was conjectured. In an earlier related paper 
[lo], however, where the finite element method and 
the smoke visualization of the streamlines were used 
to study the natural convection between a concentric 
square bar and an outer horizontal circular cylinder, 
this phenomenon was absent due to the relatively low 
Rayleigh number range of investigation, Ra < 10’. 
For the same problem with Rayieigh numbers greater 
than 106, Cho [l 1] suggested with experimental evi- 
dence that flow separates at the sharp upper edges 
of the square bar. Recently, Miyamoto et al. [12] 
reported on the heat transfer from rectangular prisms, 
the aspect ratio of which is varied from a vertical plate 
to a horizontal one. Their analysis using the finite 
difference method, which is limited to a relatively low 
Rayleigh number 1.94 x 104, suggested the existence 
of a separated bubble above the upper surface of the 
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NOMENCLATURE 

:, 
gravitational acceleration Greek symbols 
Grashof number, &L3( r,. - T,), 1” thermal diffusivity 

II local heat transfer coefficient ; thermal expansion coefficient 
li thermal conductivity 2: convergence criterion 
L side length of a square bar or length of a < dimensionless vorticity, c) (X,,L-‘) 

fat plate II angle 
L operator, L’F = [(f<F),-(f,F),]/J 1’ kinematic viscosity 
M operator, Mf= yf,-fif.: on q = const. : 1 <,v coordinates in the transformed plane 

IVI~’ = %f: -/<f;, on r = const. i’ demarcation angle for the outflow 
n coordinate in the normal direction boundary conditions 
NU local Nusselt number, hL/k 4 dimensionless temperature, 
P, Q coordinate control functions (T-- ~,,)i(T* - T”) 
Pr Prandtl number, v/SC i dimensionless stream function, q/E. 
Ra Rayleigh number, gpL’( T, - T,,)iv& 
t dimensionless time, i/( L’b) Subscripts 
T temperature 0 reference value 
II, 1’ velocity components along x, E’ direction, W wall surface. 

(22, C)/(@L) 

.Y. \‘ dimensionless Cartesian coordinates, Superscript 
(.f.?:),‘L. dimensional quantities. 

rectangular bar. More recently, Chang and Choi [ 131 
presented a brief account of the flow separation from 
the upper edges of a hot square bar through a numeri- 
cal analysis. 

In this paper, two flow models were chosen : a hori- 
zontal flat plate of finite thickness and a horizontal 
square bar, both isothermal and infinitely long. The 
former can be regarded as an extreme case of a rec- 
tangular bar, where we took for convenience the 
aspect ratio of the cross-section (the thickness divided 
by the width) as 0.01. Although the flow geometries 
look unusual, they have practical industrial appli- 
cations in the cooling of integrated circuit chips and 
other components. The study also has fundamental 
importance in understanding how a buoyant bound- 
ary layer separates past sharp edges and how the heat 
transfer characteristics are accordingly affected. 

NUMERICAL STUDY 

Mathematical formulation 
One of the two physical models is pictured sche- 

matically in Fig. 1. A horizontal square bar of dimen- 
sion Lx L is situated in an infinite air medium of 
temperature T,. The bar is kept at a higher uniform 
temperature T,. Symmetry with respect to the vertical 
mid-plane is assumed. If the symmetry cannot be 
assured for some reason, a full flow domain should 
be taken into account rather than half. In the present 
study, this symmetry has been carefully monitored 
through Mach-Zehnder interferometry. The broken 
line in Fig. 1 represents the demarcation line across 
which the inflow and the outflow boundary conditions 

FE. I. Schematic diagram of the flow over a square bar. 

are differentiated on the far boundary. 
We used the Boussinesq approximation for two- 

dimensional steady laminar natural convective flow. 
The non-dimensional form of the governing equations 
is, in Cartesian coordinates 

<,+u<,+v[, = PrV’[fRaPrb, (1) 

[ = -Vl* (2) 

+,+zqbv+rKb,, = v2b, (3) 

where 
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Ellipticity of the above governing differential equa- 
tions demands boundary conditions on the entire 

boundary enclosing the flow field, while their para- 
bolicity requires the description of the initial 
condition. The inner boundaries are made of the body 
wall and the lines of symmetry where we specify 

* = 0, i = -+,,> 4 = 1 on the wall 

$=i=&=O on the line of symmetry. (4) 

Natural convection about a horizontal circular cyl- 
inder in an infinite fluid medium was previously cal- 

culated by Kuehn and Goldstein [14], and Farouk 
and Guceri [15]. They justifiably thought that on the 
far boundary the fluid either enters or leaves the 
domain radially ; on the outflow boundary, the tem- 
perature of the leaving fluid satisfies a Neumann con- 
dition. Then, on the inflow boundary 

$, = [, = 4 = 0 where 0 < 0 < p 

and on the outflow boundary 

(5) 

$,, = [, = I$,, = 0 where p G Q G TK. (f-5) 

For good accuracy, the pseudo far boundary of the 
finite computational domain should be located as far 
from the body as possible. Through extensive test 
calculations, we found that the circular pseudo far 
boundary located at a distance 8L or more from the 
centre of the body is sufficient, causing virtually no 
change to the solution near the body. 

The demarcation between the inflow and the out- 
flow on the pseudo far boundary can be determined by 
observing the interferograms. The outflow boundary 
should be chosen large enough to cover the buoyant 
thermal plume region. It is found that the numerical 
solution is rather insensitive to the change of the 
demarcation as long as the rising plume is properly 
treated by the outflow condition. We fixed the demar- 
cation at p = 0.771 for all the calculations made in the 
present paper. 

Method of solution 

It is important that the coordinate system conforms 
to the boundary shape of the flow region. In this 
paper, mapping of the flow domain (Fig. 2) is carried 
out by a general clustered curvilinear coordinate 
system, patterned after Steger and Sorenson [16]. 
Application of this kind of general body-fitted coor- 
dinate has not been frequently made in the heat trans- 
fer area. One exception is a melting problem con- 
sidered by Rieger et al. [ 17, 181. 

The boundary-fitted coordinate system is generated 
numerically by solving a system of elliptic equations 

O’x = 0, P’y = 0 (7) 

with Dirichlet boundary conditions. The transformed 
Laplace operator contains coordinate control func- 
tions P and Q, which can influence the structure of 
the grid if properly chosen 

0’ = {@arc - 2pacs + yaqq + .wa, + ea, ))iJ* (8) 

where 

CI = x;+y:, y=x:+y; 

B = x<+ +YyYq> J = XCYV -X,Yr. 

It is known that the accuracy of computation is 
improved in association with applying the boundary 
conditions, if near-orthogonality of the coordinates 
is maintained around the boundary in the general 
coordinate system. Here, the source terms P and Q 
were determined by enforcing the orthogonality con- 
dition at the boundary points and by assigning the 
minimum grid distance from the body. For more 

information see ref. [ 161. 
The given set of governing equations (l)-(3) as well 

as the boundary conditions are accordingly trans- 
formed. It is noted that the unsteady terms included 
in the present formulation permit the powerful alter- 
nating direction implicit (ADI) computation, later. 
The results are 

(,+L*[ = Prv2[+RaPrLY4 (9) 

p=* = -[ (10) 

4, + L*cp = o*l#J. (11) 

The boundary conditions are transformed as follows : 

*=<=o, Mcp=O on the symmetry line 

*=0, ;+, 4=1 on the wall 

M$=M<=c$=O on the inflow region 

MI/I = MI: = M$ = 0 on the outflow region. (12) 

The transformed vorticity transport equation and the 
energy equation are solved by the AD1 technique. 
For the stream function equation the successive over- 
relaxation (SOR) method is appropriate. All the 
derivatives with respect to and including the con- 
vection terms, are approximated by the central differ- 
ence schemes. Convergence was achieved with the cri- 
terion JB”+ ’ -B”I/IB”+ ’ 1 < E. The value of E taken 
for the convergence was 0.001 for both the vorticity 
(B = E) and the temperature, and 0.01 for the stream 
function. 

Results 

Numerical solutions are obtained for the two sharp- 

edged models so that the effect of geometry on the 
flow separation can be identified. The Prandtl number 
is fixed at 0.7 throughout the numerical study, while 
the Rayleigh number is changed to several selected 
values in the laminar convection regime. 

The grid systems used for calculation are shown 
near the body in Fig. 3. The grid distance is made 
smallest near the heated surface and is gradually 
expanded in the outer region. For a flat plate and a 



Physical domain Computational domain 

square bar in the compntationa~ domain (t, sf 5 1 x 8 1 
and 54 x 81 grid points were used. respectively. 

Figure 4 shows represcntativc temperature and 
stream function contours for a fiat plate at 
Kn = 5x 109. Flow patterns remain very similar for 
various Rayleigh numbers from lo’ to IO”. The iso- 
therms are dense near the surface and formation 01 
the thermal boundary layer and the buoyant plume is 

evident, convecting heat away from the body. 
The flow did not separate during the 180 -turn 

around the sharp edges. The self-closed streamlines in 
the flow frefd. which are ind~spu~b~e evidence of a 
separated flow, were not carn~ute~~ above the upper 
surface in Fig. 4. In contrast, ~iyamoto ct d.“s cal- 
culation f12j showed a small separation bubble on the 
upper surface of a horizonta1 plate near the sharp 

edges at Rrc = 6.48 x 10” and for Pr = 0.72. They sug- 

gested that this separation bubble caused inst~bilily 
and induced Now asymmetry above the ffat plate. In 
our numericai calculation. however. the separation 
bubble which had appeared during the rime marching 
process finally vanished as the solution converged to 
the steady state 

Distribution of the local Nusseh number scaled 
by Ru “’ is plotted for the flat plate in Fig. S rotor 
three different Rayleigh numbers. The heat transfer 
coefEicient has a peak near the sharp edge and its value 
at the centre of&e plate is greater on the Iower surface 
than on the upper one. ~~perimental study of a flat 
plate heated on the downward-faking surface was pcr- 
rormcd by Aihara ef al. [ 191. Restrepo and Glicksman 
1301 experimentally studied natural convection from 

FIG. 3. Grid systems near it fiat piate (a] and a square bar (b). 
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Q, G 
FIG. 4. Isotherms and streamlines for a flat plate (Ra = 5 x 10“). 

a finite horizontal square plate heated again on the 
downward face in air. These results are also plotted 
in Fig. 5. 

Figures 6(a)-(c) show the contour lines of constant 
temperature and constant stream function for a 
square bar at increasing Rayleigh numbers. Because 
of the alignment of the buoyancy force with the body 
surface, the convective flow gains more momentum 
along the vertical surface than along the horizontal 
one. The isotherms around a horizontal square bar at 
Ru = lo3 presented in Fig. 6(a) are globally similar to 
those from a circular cylinder 1141. At higher Rayleigh 
numbers, the thermal boundary layer around the 
square bar and the buoyant plume become more dis- 
tinctive as observed from Figs. 6(b) and (c). As the 
flow accelerated by the heated vertical surface reaches 
the end of the surface, it cannot make a sudden turn 
at the sharp edges where the wall curvature is infinite, 
resulting in a flow separation. However, in the case of 
insufficient flow acceleration, separation of flow is not 
assured at the sharp edges. The less heated flow at 
Ra = lo3 in Fig. 6(a), the attached boundary layer 
flows around the lower sharp edges at high Rayleigh 

FIG. 5. Local Nusselt number distributions for a flat plate. 

numbers in Figs. 6(b) and (c), and the flow around a 
horizontal flat plate in Fig. 4 are examples. In Fig. 
6(b), the separated flow region above the upper sur- 
face causes a little dent on the innermost isothermal 
line. As the Rayleigh number is increased to 1.53 x lo’, 
Fig. 6(c), a characteristic finger print appears in the 
pattern of isotherms, and the separated flow turns 
into active twin vortices. The depressed isotherms in 
the separated flow region resemble an ice-cream 
scoop, with temperature inversion in the circum- 
ferential direction. 

Local Nusselt number is piotted in Fig. 7 for a 
square bar with the Rayleigh number as a parameter. 
As the Rayleigh number is increased, near-similarity 
is obtained along the vertical surface. In contrast, this 
similarity is lost along the horizontal surfaces. Both 
when the separated flow does not exist and when the 
strength of the twin vortices generated by the gow 
separation is weak, the local Nusselt number decreases 
monotonously with the horizontal distance from the 
upper sharp edge. However, with strong twin vortices 
above the cylinder the local Nusselt number has a local 
peak at the centre of the upper horizontal surface. 
It is due to the downwash in the region near the 
symmetry line caused by the counter-rotating twin 
vortices. Having released its thermal energy by con- 
duction to the external fluid during the vertical 
motion, the flow in the downwash is at relatively low 
temperature. 

The local Nusselt number ~stribution along the 
wall is shown for Ra = 3.56 x IO4 in Fig. 8. Previous 
experimental results obtained at Gr = 5.72 x lo4 in 
air by Eckert and Soehngen 1211 are shown by 
squares. Miyamoto CYE al.3 numerical result is also 
plotted [12], although their calculation was done at 
Ra = 1.94 x lo4 and Pr = 0.72. It is noted that all the 
results have the same trend qualitatively. Particularly, 
the present numerical results are observed to be in 
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FIG. 6(a). Isotherms and streamlines (Ra = IO’). 

and streamlines (I& = 1.53 x 10’) 
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FIG. 7. Local Nusselt number dist~butions for a square 
bar: -.--, Ra Ra = 3.56x 

Ra = 1.53 X 10’. 

good agreement with the previous experiment by 
Eckert and Soehngen [21]. 

For the flow past a circular cylinder, the flow 
remains attached to the body for a Reynolds number 
less than 5. In the Reynolds number range from 5 to 
40, the flow pattern allows stationary twin vortices 
in the separated region behind the cylinder. For a 
Reynolds number greater than 40, the flow finally 
becomes unsteady and shedding of the vortices occurs 
in an alternating form [22]. In contrast, the separated 
natural convection above a square bar retains station- 
ary twin vortices even for relatively large Rayleigh 
numbers. The height of the closed streamline region 
above a square bar is shown in Fig. 9. It is unlikely, 
however, these twin vortices break in a shedded form 
without first introducing flow instability and tran- 
sition to turbulence when the Rayleigh number is 
further elevated. 

EXPERIMENTAL STUDY 

A test model shown in Fig. 10, designed to operate 
in air at atmospheric pressure, was built for a Mach- 
Zehnder interferometer of 20 cm mirror size. The 
model was housed in a relatively large acryl chamber, 
where a pair of quartz windows were installed on the 

0.5 

--.-..--... 
~ 

0.0 1.0 2.0 

s/t 

FIG. 8. Local Nusselt number for a square bar. 
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FIG. 9. Height of the closed bubbles. 

chamber wall for the beam path. A 10 mW He-Ne 
iaser was used as a light source. The assembled appar- 
atus was then sufficiently free from environmental air 
disturbances. 

Two different test models were manufactured from 
welded square copper pipes by machining their outer 
surfaces. One square bar had external dimensions of 
2.43 x 2.43 x 30.10 cm with a wall thickness of 
0.31 cm, and the other had external dimensions of 
3.90 x 3.90 x 25.02 cm. The first model was used for 
relatively low Rayleigh numbers and the second for 
Rayleigh numbers larger than 1.02 x 10’. The cylinder 
was heated internally by a coiled 20 R electrical resist- 
ance wire with conductive substances such as iron and 
magnesium powder packed in the rest of the inner 
space. End insulators made of polystyrene square 
plates were installed at the ends of the square bar. In 
order to attain uniformity of the surface temperature, 
iron and magnesium powders mixed in different ratios 
in different azimuthal directions were used. To check 
longitudinal temperature uniformity, five thermo- 
couples were installed on the upper surface ; the 
circumferential unifo~ity was monitored by the four 
the~ocouples, installed one on each side at three 
different cross-sections. An individual thermocouple 
was calibrated to an accuracy of 0.1 “C. The maximum 
deviation from uniformity was 0.5% in the azimuthal 
direction and 0.4% in the longitudinal. 

In the finite-sized test chamber where thermal strati- 
fication may cause an unfavorable effect on the con- 
vection, some special treatment was required. Because 
each fringe number in the interferogram indicated a 
3°C temperature increment in the 25 cm optical path, 
a slight thermal stratification would disturb the fringe 
pattern noticeably. The problem was overcome by 
curtailing the transition time until a steady state was 
reached, by imposing a large heating rate initially. By 
this procedure the maximum thermal stratification 
was reduced to 0.007”C cm-’ at worst. 

Procedure 
The operational principle of a Mach-Zehnder inter- 

ferometer was described by Hauf and Grigull [23]. 
The input power was supplied by a HP 6255A dual 
d.c. power supply. All the data were either stored on 
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a 
FIG. IO. Experimental test model: A, heater; B, iron and magnesium powders; C, copper pipf: 

D. thermocouple ; E. polystyrene: F, yellow pine wood. 

(a) (b) (cl 

FIG. I I. fnterferograms for a square bar: (a) Ra = 1.95 x lo”, Pv = 0.704; (b) Rri = 3.56 x IO’, I+ = 0.696; 
(c) /?a = 1.53 x 105. Pr = 0.700. 

a cassette tape or printed using a Commodore 2001 
series PET micro-computer and a HP 3465A digital 
multimeter. The analogue signal from the thermo- 
couples, the voltage and the current of the power 
supply were automatically recorded at every 10 min 
intervals. All photographs were taken on ASA 100 
Neopan SS fine grain panchromatic film using a 
Nikon F-3 camera. The total running time was about 
2-3 h. 

The overall heat transfer was determined either 
from the real input power or from the interferograms. 
The two had a discrepancy and a compensation was 
necessary: the thermal radiation loss was approxi- 
mately determined ‘by using the Stefan-Boltzmann 
equation. This generally was larger than the estimated 
two-dimensional heat loss due to the end effect. 

Results 
The interferograms are presented in Figs. 11 (a)-(c) 

for three different Rayleigh numbers. The fringes can 
be considered as isotherms since the index of refrac- 
tion is a function of temperature only in natural con- 
vection. The air properties at the mean of the two 
tem~ratures T, and T, were used here to evaluate 

the Rayleigh number, the Prandtl number and the 
Nusselt number. 

In Fig. I 1 (a) at Ra = I .95 x LO”, the largest distance 
between isotherms or the smallest temperature gradi- 
ent occur along the upper symmetric line. In natural 
convection, when there are two or more counter- 
streamings in a confined area, it is common that the 
cursature of the isotherms change their sign and the 
isotherms are bulged in the fiow direction, which usu- 
ally cause the phenomenon of temperature inversion. 
In Fig. 1 l(b) at Ra = 3.56 x IO’. it is ohserved that 
even for an external convection the isotherms near the 
body are slightly depressed toward the waif in the 
upper symmetry region. The central compression of 
the isotherms is even more amplified. even to the 
fcrm of the earlier ice-cream scoop, in Fig. 11 (c) for 
Ra = 1.53 x 10’. This phenomenon suggests that there 
is evidently a downwash in the convective stream OVCI 
the upper horizontal surface near the symmetric line. 
Recall that it has been shown from the earlier com- 
putational results, Fig. 6, that the compression or even 
the flatness of the isotherms in this region is dire&y 
related to the separated flow appearing in the form of 
counter-rotating twin vortices. 
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FIG. 12. Comparison of experimental and numerical isotherms. 

Ra 9.7 x lo4 I.02 x 105 
PU 0.709 0.7 

In Fig. $2, direct comparison ofthe isotherms from 
the present experiment @@ and the ~rn~~tatio~ 
(right) is presented. The seven isotherms well matched 
belaw the bottom of the cylinder do not perfectly 
coincide above the upper surface. Nevertheless, the 
overall agreement in the qualitative trend is indis- 
putable, The readers are referred here back to Fig. 8 
where the compuiational Iocai Nusselt rmmber was 
qu~~ti~a~ve~y weI ctlmpared with tEre heat flux 
m~~s~rement of Eckert and Soehngen 12 11. 

The average heat transfer coefficient obtained from 
the experiment and the computation is given in Fig. 
t3. The agreement is reasonable in the range 
1.95 x I @ < Ra < I@. %r a higher Rayleigh number 

range, however, the Earge radiattiortaf energy loss and 
the end wall e&et could probably be blamed for the 
deviation of #he data. For a Rayleigh number lower 
than 1.95 x lo’, thl: size of the test model had to be 
reduced and a reduced temperature scale used. The 
ins&cient number of fringes in the interferogram in 
this case made the present experimental results very 
unreiiabk and the idea of extracting any useful infor- 
mation from tie ~~te~eromet~ had to be abandoned. 
For a two-dimensio~i square bar, King’s correlation 
[M] can be rewritten as 

% = 0.357R~“~ 0% 

by using the side kmgth of the bar as a -characteristic 



length. From the experimental data in the present 
study, the average Nusselt number can be correlated 
by Ieast-square regression analysis in the range 
3x104<&Z<ZxI05as 

-.- 
iVU = ff.85BRa”.‘77. Wi 

l[f one prefers to fit the data in one-ft~urth power law, 
the correIatio~ wauld become 

SUMMARY AND CCSNCLUSIONS 

Solution ta the Navier--Stokes and energy equa- 
tions has been obtained for the natural convection 
heat transfer from a horizontal, isothermal, sharp 
edged object such as a Bat ptate or a square bar. Some 
of these convections f~ave aiso been expe~rne~~a~~~ 
studied. The flow pattern around a Aat plate shows 
no flow separation at the sharp edges in the Ray~e~~~ 
number ran~~considered. Similarly, it has been shown 
for a square bar that the strong t~~e~nobydrau~~c intcr- 
ference between the adjacent walls causes the thermal 
boundary layer to follow &se@ the body con- 
figuration with no premature flow separation, if the 
Rayleigh number is sufficiently low of the order of’ 
10”. In contrast, it has been disclosed that for higher 
Rayleigh numbers a separated flow pattern is possible 
abo~ the upper horizontal surface of a square bar. 
The tem~eratnre inversion in the ~j~c~mferentia~ 
direction, which is the consequence of the active twin 
vortices, is found when the Ray~eigh number becomes 
of the order of 1 OS. The separated Now was maintained 
in a closed bubble form to the highest Rayleigh num- 
ber calculated, without any indication of bursting. 
The local and average Nusselt numbers are obtained. 
It is found that the Row separation causes the local 
heat transfer to increase on the upper horizontal SW- 
face of a square cylinder, but not the overall heat 
transfer. Comparison between the numerical and the 
experimental results has demonstrated good agree- 
ment 0veraIf. 
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CONVECTION NATURELLE THERMIQUE LAMINAIRE AUTOUR DE BARRES 
HORIZONTALES A ARETES BRUSQUES AVEC ECOULEMENT DE SEPARATION 

R&&-La convection naturelle laminaire autour dune barre horizontale a aretes brusques, placbe dans 
un fluide infini, a et6 etudiee numkiquement et expCimentalement. Des solutions aux differences flnies 
pour les equations bidimensionnelles de NavierStokes et de l’energie sont obtenues pour deux con- 
figurations avec le nombre de Prandtl 0,7: une plaque plane d’epaisseur 8nie et une barre cart&. La 
dilhculte asso&& au domaine complexe physique de l’ecoulement est surmont&e en utilisant des coor- 
don&es adapt&es. Dans l’btude nurn&ique on ne trouve pas l’indication d’un ecoulement avec separation 
pour la plaque plane, dans le domaine de nombre de Rayleigh lo3 < Ra C 10’. Pour la barre car&e, la 
couche limite se &pare aisement aux coins superieurs pour Ra > 5 * 10’ et deux tourbillons jumeaux bien 
d&finis sont identifies au dessus de la surface superieure horizontale. Une etude interferometrique Mach- 
Zehnder est developpee dans l’air pour determiner les distributions de temperature et du nombre de 
Nusselt dans le domaine de nombre de Rayleigh 1,95. IO4 < Ra Q I,53 - 10’. La comparaison des resultats 

numeriques et ex~rimen~ux conduit a un bon accord. 

WARMEUBERGANG BE1 LAMINARER NATURLICHER KONVEKTION AN 
SCHARFKANTIGEN WAAGERBCHTEN STbiBEN MIT STRC)MUNGSABLC)SUNG 

2~f~-Die laminare natiirliche Konvektion an einem ~h~~antigen waagerechten Stab im 
unendlichen Fluid wurde numerisch und experimentell untersucht. Lijsungen der zweidimensionalen 
NavierStokes-Gleichungen wurden mit Hilfe tiniter Diiemnze.n fti eine Prandtl-Zahl von 0,7 fIi.r den Fall 
einer ebenen Platte endlicher Dicke und filr einen quadratischen Stab ermittelt. Probleme, die sich aus dem 
komplizierten Striimungsfeld ergaben, wurden durch dem K&per angepaDte Koordinaten gel&t. Aus der 
numerischen Untersuchung ergab sich fiir die waagerechte Platte kein Hinweis fiir eine Striimungsabliisung, 
solange die Rayleigh-Zahl zwischen 10’ und IO5 lie@. Beim quadratischen Stab jedoch lijste sich die 
Grenzschicht an den oberen scharfen Kanten bei Ru & 5 * 10’ ab, und es waren paarweise Wirbel oberhalb 
der waagerechten Obertlache zu erkennen. Pa&let dazu wur&n Messungen mit einem Mach-Zehnder- 
Interferometer an einem quadratischen Stab in Luft durchgefuhrt, urn die Brtliche Verteilung von Tem- 
peratur und Nusselt-2ahl fti Rayleigh-Zahlen zwischen I,95 * IO4 und 1,53 - 10” zu ermitteln. Der Vergleich 

zwischen experimentellen und theoretischen Ergebnissen ergab gute Ubereinstimmung. 

~~~HAPHbI~ E~E~3EHHOKOHBEKT~BHbI~ TB~~OHEPEH~ OT 
TOPH3OHTAJIbHbIX EPYCbEB C OCTPOti KPOMKOa B YCJIOBHRX OTPbIBA 

TErIEHklx 

Amomum--YHcnemo a 3xcnepnMenranbrio riccnenyercR na~riapriax ecrecrnemian ~0meKxuia xi= 
rOpH30HTaJlbHhIM 6pyCKOM C OCTpOzt KpOMICOfi, lIOMW@- 6 HeOl-paHmreWHbIji 06s.e~ moc’rn. 
Pememfe nByMepHbIx YpaBEed HaBbe-CTOKCa H 3Iieprua nonynewr ?&TozoM KOHembIX pa3Hocreii 
np~ 3aiwizio~ aime llpa~m~~n 47 n,nn onyx xoH~~: nnocxaa mamma rcoHewo& ~0Jmrmibr a 
Gpycon KBW@~T~~OI-O ce=reEuiK. %EfOJIb3OBaHEe Koop.I&imaT c HmmOM B UeHTpe accneJgyeMoro Tena 

ycrpassm rpy~ocrra,cBll3;unotJec~~3Hs~CnolgHbFM~ ycnoa~afe¶e~a.~p~s~c~e~~o~~ccne- 

LIOB~E~H He 06HapyxceHo o~parsa TesemiK LUUI cnyran IIJIOCEO~? I'IJI~CTBH~I B LIHana3oHe UWJI P3nen 

IO3 ~2 Ra 5 105. Omarco B crrynae 6pycxa nsanparrioro cenemia norpanlmrrb& cnoi nerxo orpbmaercn 
Ha sepw~x OcrpbIX KpOMKi4X npn Ra> 5. lo3 H H&9 r%pxneti rOpIi30HTaJIbHOii noBepxHocTbto 
UO~~~~I~TC~~~TRO~~~~~~~XBO~~BHX~H.~ IIOMO~IOHHT~~+~KIM~T~~ Maxa-qqepa npo- 
nenetibr siccne~ouamrn na no3nyxe Qns 6pycxa reaxpa~~oro ceseHHn, si3 K~TOPW HatieHba pacrpe~ex- 
HHKJIOK~~EMX TeMnepaTypbiH~~HyeCenaTa~~~~o~~WCen~eK 1,95-l@ SRa 1; I,53 *lo’. 

Cpaenensre nrrcnenribrx ri 3xcrrepsiMerrranbrih pe3yJIbraTo8 ~oKa3mo ux xopomee cornacne. 


